EUSeaMap

Broad-scale seabed habitat maps for integrated management in European waters

Andy Cameron (JNCC) on behalf of the EUSeaMap consortium

GeoSeas workshop – 9th October2012 Cork, Ireland

Background

- What: EMODnet & EUSeaMap?
- · Why?

EMODnet design principles

- collect data once and use it many times
- develop standards across and within disciplines
- process and validate data at different levels. Structures are already developing at national level but infrastructure at sea-basin and European level is needed
- provide sustainable financing at an EU level so as to extract maximum value from the efforts of individual Member States
- build on existing efforts where data communities have already organised themselves
- develop a user-driven decision-making process for priorities
- accompany data with statements on ownership, accuracy and precision and
- recognise that marine data is a public good and discourage cost-recovery pricing from public bodies

EMODnet projects

- In 2008, the EC issued two calls for preparatory actions to test the 'proof of concept' for a full EMODnet project
- Funded by maritime policy preparatory action (not FP)
- First urEMODnet call subdivided into 'lots'
 - Hydrography/bathymetry
 - Geology
 - Biology
 - Chemistry
 - Physical properties (addition 2010)
- Second call to establish a broadscale habitat map of Europe

EUSeaMap: the process

- EUNIS
- Input data used/developed
- Assess confidence in predictions

Biologically relevant?

Represented in EUNIS?

Other possible parameters:

- Energy at seabed (waves, currents)
- Light penetration
- Seabed temperature
- Oxygen levels
- Stratification

Requirements:

1. Full coverage layers – physical data

2. Thresholds – biological (habitat or reference species) data

3. Confidence – physical and biological (habitat) data

1. Full coverage layers – physical data

EMODnet

Light attenuation

- MESH seaWiFS (9km)
- UKSeaMap2010 AquaMODIS (4km)
- EUSeaMap MERIS250m (coastal waters)1km (offshore)

Baltic: Improved secchi depth layer

Energy

- Kinetic energy (function of orbital/current velocity) at the seabed for waves and tidal currents
- North/Celtic Hydrographic models ProWAM (12.5km) and DHI/ABPMer (100m)
- Baltic Hydrographic models (DHI 3HS) and SWM
- Multiple statistics

Thresholds

- e.g. Infra/circa boundary W Med
- Healthy status Posidonia oceanica meadows
- Minimum % light values within meadows

T&Cs | give feedback | help | partners | JNCC

EUSeaMap

Pilot portal for broadscale modelled seabed habitats

1. Validation by external data

Number

Bathy_ita_fr Total scor

Producers

2. Assessing quality of source data

Confidence: 3 approaches

Class	References	Classifie
Name	Totals	Tota
Class 0	0	2
A5.13	0	3
A5.23	12	14
A5.33	0	1
A5.38	15	17
A5.39	30	17
A5.46	16	19
A5.47	3	2
A6.511	3	3
TOTAL	79	79

Accuracy percentage between modelled dat

Cell by cell measure of confidence by the model using fuzzy classifiers to visualise confidence in transitional areas

EUSeaMap?

- Developments in the input data
- Confidence mapping techniques

- Developments in the input data
- Confidence mapping techniques

Applications

- Initial Assessment and GES
- MPAs
- Vulnerability and Monitoring

MSFD Initial Assessments, GES etc.

Kattegat area.

falls below 2mgO2/l at least once in a 9-year period.

22

10/10/2012 **EMODnet**

Representative networks of MPAs

Habitats per 10Km

Habitat complexity map

Number of habitats present in a 10-km grid indicating highly diverse areas.

23 Proportions by biological zone for Mediterranean

EMODnet

10/10/2012

Vulnerability and monitoring

24

- Extended coverage MESH Atlantic and EMODnet phase II
- Improved data
- Improved methods biology links and confidence
- Fine-scale maps
- Applications

Project partners:

Agency for Spatial and Environmental Planning

ISPRA
Istituto Superiore per la Protezione e la Ricerca Ambientale

jncc.defra.gov.uk/euseamap

andy.cameron@jncc.gov.uk